Global Comparison Principles for the p-Laplace Operator on Riemannian Manifolds
نویسندگان
چکیده
منابع مشابه
The Laplace-Beltrami-Operator on Riemannian Manifolds
This report mainly illustrates a way to compute the Laplace-Beltrami-Operator on a Riemannian Manifold and gives information to why and where it is used in the Analysis of 3D Shapes. After a brief introduction, an overview over the necessary properties of manifolds for calculating the Laplacian is given. Furthermore the two operators needed for defining the Laplace-Beltrami-Operator the gradien...
متن کاملMonotonicity Theorems for Laplace Beltrami Operator on Riemannian Manifolds
Abstract. For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of these results for the LaplaceBeltrami operator on Riemannian manifolds. As an application we show that our monotonicity theorems can be e...
متن کاملEigenvalues Estimates for the p-Laplace Operator on Manifolds
The Laplace-Beltrami operator on a Riemannian manifold, its spectral theory and the relations between its first eigenvalue and the geometrical data of the manifold, such as curvatures, diameter, injectivity radius, volume, has been extensively studied in the recent mathematical literature. In the last few years, another operator, called p-Laplacian, arising from problems on Non-Newtonian Fluids...
متن کاملUncertainty Principles on Compact Riemannian Manifolds
Based on a result of Rösler and Voit for ultraspherical polynomials, we derive an uncertainty principle for compact Riemannian manifolds M . The frequency variance of a function in L(M) is therein defined by means of the radial part of the Laplace-Beltrami operator. The proof of the uncertainty rests upon Dunkl theory. In particular, a special differential-difference operator is constructed whi...
متن کاملEigenvalues of the Laplace Operator on Certain Manifolds.
To every compact Riemannian manifold M there corresponds the sequence 0 = X1 < X2 < X3 .< ... of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence.' This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2010
ISSN: 0926-2601,1572-929X
DOI: 10.1007/s11118-010-9199-4